Abstract

Sustainability and eco-efficiency are presently directing the development of the next generation of acoustic materials. In this work, foamed cellulose-polymer microsphere (PM) hybrid materials, having sound-absorbing capability, were prepared by incorporating the PMs into cellulose fibers by dehydration and foaming processes. The evolution in morphology of PMs during foaming process was investigated for different heating temperatures. The beating process disintegrated the microscopic cellulose fiber into the smaller fibers, which connected the PMs by a unique fibrous network. The influences of foaming temperature, PM content, and total areal density on the sound absorbing property of composites were studied. The results showed that incorporating the acoustic unit of elastic PMs into the porous cellulose fiber-based network significantly improved the sound absorbing ability of the composites. The sound-absorbing hybrid materials appear to be a promising alternative to non-degradable organic or inorganic acoustic composites, being economical, simple, and eco-friendly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.