Abstract
AbstractThe effect of the dispersion and intercalation/exfoliation of organoclay on the mechanical properties of epoxy nanocomposites was studied. The epoxy resin was EPON828 and the hardener was Jeffamine D‐230. The organoclay Cloisite 30B was used. Nanocomposites were prepared by different mixing devices that can generate different shear forces, such as a mechanical stirrer, a microfluidizer, and a homogenizer. The results indicate that the modulus increases almost linearly with the clay loading and also is improved with the quality of microdispersion, although the latter plays a less important role. On the other hand, only good dispersion can improve the strength, while poor dispersion results in loss of strength. The strength levels off above 4 wt% organoclay loading. It can be concluded that finer and more uniform dispersion increases the clay surface area available for interaction with the matrix and reduces stress concentration in the large aggregates that initiate the failure under stress. It is also observed that the presence of C30B does not significantly affect the glass transition (Tg) of the epoxy systems regardless of the level of clay dispersion and clay loading. Dynamic mechanic analysis (DMA) shows the positive effect of dispersion and intercalation/exfoliation on the storage modulus of epoxy nanocomposites (ENCs). POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.