Abstract
Electro-conductive fabrics were prepared via in situ oxidative polymerization of pyrrole (Py) in the presence of unmodified and chemically modified cotton fabrics. Chemical modification of cotton fabric was achieved by covalent attachment of a bifunctional linker molecule to the surface of the fabric, followed by incorporation of a monomer unit onto the linker. The fabrics were characterized using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron spectroscopy, and thermal analysis. Furthermore, the effect of Py concentration on the degree of polypyrrole (PPy) grafting, surface morphology, electrical resistivity, and laundering durability were studied for both types of cotton fabrics. Reductions of several orders of magnitude in surface and volume electrical resistivities were observed for both non-covalently and covalently linked cotton-PPy systems, whereas the effect of covalent pre-treatment of the fabric was stronger at low Py concentration. On the other hand, at higher monomer concentration, the electrical properties and laundering durability of the fabrics we comparable for both unmodified and chemically pre-treated cotton fabrics, indicating that only a small fraction of PPy chains were chemically grafted onto the fabric surface with the majority of the polymer being connected to the fabric through hydrogen bonds.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.