Abstract
Natural polymer hydrogels have good mechanical properties and biocompatibility. This study designed hydroxyapatite-enhanced photo-oxidized double-crosslinked hydrogels. Hyaluronic acid (HA) and gelatin (Gel) were modified with methacrylate anhydride. The catechin group was further introduced into the HA chain inspired by the adhesion chemistry of marine mussels. Hence, the double-crosslinked hydrogel (HG) was formed by the photo-crosslinking of double bonds and the oxidative-crosslinking of catechins. Moreover, hydroxyapatite was introduced into HG to form hydroxyapatite-enhanced hydrogels (HGH). The results indicate that, with an increase in crosslinking network density, the stiffness of hydrogels became higher; these hydrogels have more of a compact pore structure, their anti-degradation property is improved, and swelling property is reduced. The introduction of hydroxyapatite greatly improved the mechanical properties of hydrogels, but there is no change in the stability and crosslinking network structure of hydrogels. These inorganic phase-enhanced hydrogels were expected to be applied to tissue engineering scaffolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.