Abstract
Three different methods for the preparation and modification of conducting polymer/noble metal catalyst systems consisting of polypyrrole (PPy) and platinum (Pt) are described for the anodic oxidation of methanol. The first method consists of the electrochemical deposition of a thin PPy film on glassy carbon substrate, which is modified with Pt either by electroreduction of hexachloroplatinate, codeposition from a nanodispersed Pt solution, or incorporation of tetrachloroplatinate as counterion followed by cathodic reduction. A second method is based on the preparation of nanoscale PPy(PSS) particles by chemical polymerization with polystyrenesulfonate PSS– as the counterion. This material is a favorable catalyst support for nanodispersed Pt due to its mixed electronic and cationic conductivity. To study the electrochemical properties, the particulate system PPy(PSS)/Pt is fixed in a carbon fiber electrode. A third method was developed which brings the polypyrrole in close contact to a proton exchanger membrane (Nafion) using a special chemical deposition procedure. This method is useful for preparing a membrane electrode assembly (MEA) consisting of Nafion/PPy/Pt. The structural, morphological, and electrocatalytic properties for methanol oxidation were studied depending on the preparation method applied using surface analytical techniques (TEM, SEM, and EDX) and electrochemical measurements (cyclic voltammetry and transient techniques).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.