Abstract

To solve the problem of snow on steel bridge areas endangering traffic safety and low road traffic efficiency in winter, conductive gussasphait concrete (CGA) was prepared by mixing conductive phase materials (graphene and carbon fiber) into Gussasphalt (GA). First, through high-temperature rutting test, low-temperature bending test, immersion Marshall test, freeze-thaw splitting test and fatigue test, the high-temperature stability, low-temperature crack resistance, water stability and fatigue performance of CGA with different conductive phase materials were systematically studied. Second, the influence of different content of conductive phase materials on the conductivity of CGA was studied through the electrical resistance test, and the microstructure characteristics were analyzed via SEM. Finally, the electrothermal properties of CGA with different conductive phase materials were studied via heating test and simulated ice-snow melting test. The results showed that the addition of graphene/carbon fiber can significantly improve the high-temperature stability, low-temperature crack resistance, water stability and fatigue performance of CGA. The contact resistance between electrode and specimen can be effectively reduced when the graphite distribution is 600 g/m2. The resistivity of 0.3% carbon fiber + 0.5% graphene rutting plate specimen can reach 4.70 Ω·m. Graphene and carbon fiber in asphalt mortar construct a complete conductive network. The heating efficiency of 0.3% carbon fiber + 0.5% graphene rutting plate specimen is 71.4%, and the ice-snow melting efficiency is 28.73%, demonstrating good electrothermal performance and ice-snow melting effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call