Abstract

ABSTRACTIn the present work, silver nanoparticles were in situ-generated in cellulose matrix using Ocimum sanctum leaf extract as a reducing agent. Regenerated wet cellulose films were first immersed in O. sanctum leaf extract and then it was allowed to diffuse into the films. The leaf extract–diffused wet films were dipped in different concentrated aq.AgNO3 solutions. The leaf extract inside the wet films reduced AgNO3 into nanosilver. The dry composite films were black in color. Some of the nanoparticles were also formed outside the film in the solution. The nanoparticles were viewed by transmission electron microscopy and scanning electronic microscopy techniques. The composite films showed good antibacterial activity. The cellulose, matrix, and the composite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis techniques. The tensile properties of the composite films were higher than those of the matrix. These biodegradable films can be used for packaging and medical purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.