Abstract

Gelatin (GA), hyaluronic acid (HA) and cellulose nanocrystals (CNC) are promising materials for skin wound care. In this study the GA-HA-CNC hydrogels were prepared by cross-linking and freeze-drying. The composition and mechanism of GA-HA-CNC hydrogels were confirmed by FTIR. The morphology and pore size were obtained by SEM. We accessed the physical property from rheological results and swelling ratio. NIH-3T3 cells were inoculated into the hydrogels and cultured for different days, then we analyzed the cytotoxicity of the prepared hydrogels by CCK-8 methods and live/dead pictorial diagram using staining kits. FTIR revealed the combination between GA, HA and CNC was attributed to the amide bond and hydrogen bonding. SEM results showed that the drying GA-HA-CNC hydrogels were spongy, with the pore diameter about 80–120 µm. CNC significantly enhanced the property of the hydrogels and play a vital role according to the rheology and swelling results. The cells culture results showed that NIH-3T3 cells can attached to, grow, and proliferate well on the GA-HA-CNC hydrogels. In conclusion, the natural GA-HA-CNC hydrogel has great potential for the skin wound repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call