Abstract

Microcapsules containing epoxy resins have potential applications, such as in adhesive, electronic packaging, and self-healing polymeric composites. A series of microcapsules were prepared by in situ polymerization with poly(melamine–formaldehyde) as the shell materials and a mixture of diglycidyl ether of bisphenol A and epoxy diluent as the core substances. Morphology, chemical structure, mean particle size, and thermal properties of the microcapsules were studied by means of optical microscope, Fourier transform infrared spectroscopy, laser particle size analyzer, and microcomputer differential thermal balance, respectively. Effects of kind of epoxy diluent, surfactant type, emulsifier concentration, and emulsifying rate on the physical properties of microcapsules were investigated. Results indicate that the formation of microcapsules is affected by the epoxy diluent type and surfactant type. The highest core content of the resultant microcapsules is about 88 wt% and average diameters of the capsules range from 67 to 201 μm, which can be adjusted by changing the emulsifier concentration and emulsifying rate. Thermo gravimetric analysis indicated that the prepared microcapsules experienced excellent stability up to 235 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.