Abstract

AbstractA series of bisphenol A (BPA)‐based 2,2‐bis‐[4‐(3,4‐dicyanophenoxy)phenyl]propane (BAPh) prepolymers and polymers were prepared using BPA as a novel curing agent. Ultraviolet–visible and Fourier transform infrared spectroscopy spectrum were used to study the polymerization reaction mechanism of the BAPh/BPA polymers. The curing behaviors were studied by differential scanning calorimetry and dynamic rheological analysis, the results indicated that the BAPh/BPA prepolymers exhibit large processing windows (109.5–148.5°C) and low complex viscosity (0.1–1 Pa·s) at moderate temperature, respectively. Additionally, the BAPh/BPA/glass fiber (GF) composite laminates were manufactured and investigated. The flexural strength and modulus of the composite laminates are 548.7–632.8 MPa and 25.7–33.2 GPa, respectively. The thermal stabilities of BAPh/BPA/GF composite laminates were studied by thermogravimetry analysis. The temperatures at 5% weight loss (T5%) of the composite laminates are 508.5–528.7°C in nitrogen and 508.1–543.2°C in air. In conclusion, the BAPh/BPA systems can be used as superior matrix materials for numerous advanced composite applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call