Abstract

Grafting of biocompatible polymer onto the surface of silica nanoparticles was achieved by radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC), initiated by azo groups previously introduced onto the surface or by a system consisting of Mo(CO) 6 and trichloroacetyl groups on the silica surface. Both of these systems have the ability to initiate graft polymerization of MPC, resulting in the formation of poly(MPC)-grafted silica, but the percentage of poly(MPC) grafting for the latter initiating system was much higher than that of the former. The amount of moisture that could be adsorbed onto the silica surface was found to increase with increasing poly(MPC) grafting. This indicates that grafting of poly(MPC) onto the silica surface markedly increases the hydrophilic nature of the surface. The contact angle of water in composites prepared from poly(vinyl alcohol) and poly(MPC)-grafted silica was found to decrease with increasing poly(MPC)-grafted silica content. When poly(MPC)-grafted silica was added to water containing a small amount of chloroform, it was found to act as stabilizer for droplets of chloroform. In addition, according to tests by the Lee–White method, poly(MPC)-grafted silica shows non-thrombogenic characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.