Abstract

Efforts to enhance the electrochemical properties of materials have become the focus of numerous studies because these properties are essential in various fields of application. Zeolitic imidazole framework-67 (ZIF-67) is a type of metal-organic framework (MOFs) expected to demonstrate excellent performance in electrochemical applications due to its numerous distinct properties. Consequently, various strategies and techniques have been developed to improve the electrochemical performance of ZIF-67. In this study, we employed bimetallic ZIF-67 constructed with cobalt (Co) and copper (Cu) metal ions within the imidazole frameworks. The use of bimetal is expected to increase conductivity and fine-tune the physicochemical properties of ZIF-67. Using coprecipitation methods, we synthesized both single-metal and bimetallic ZIF-67 and compared their characterizations. The addition of Cu metal ions does not alter the materials phase, ensuring compatibility with the single-metal ZIF-67 structure. However, the rhombic dodecahedron morphology of ZIF-67 shifts from a smooth to a concave and rough surface in Co/Cu ZIF-67. Furthermore, Co/Cu ZIF-67 exhibits higher peak current on their cyclic voltammetry (CV) curve by 46.15 µA. The results effectively illustrate the advantages of bimetal on ZIF-67 properties and performance. Finally, this study succesfully briefly demonstrate the potential development of Co/Cu-based ZIF-67 for various electrochemical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call