Abstract

The objective of this paper aimed to develop a novel method to prepare enhanced bamboo-based materials. Furfuryl alcohol (FA) was used as the modification agent with maleic anhydride (MA) as the catalyst. Different bamboo samples were prepared with different FA addition level (10 wt%, 20 wt% and 30 wt%). The furfurylated bamboo samples were characterized by confocal laser scanning microscopy (CLSM), Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Moreover, the physical and mechanical properties including weight percent gain (WPG), water uptake (WU), thickness swelling (TS), modulus of rupture (MOR), and modulus of elastic (MOE) were investigated in detail. Additionally, the decay resistance of pristine and furfurylated bamboo samples was also investigated. The results showed that FA resins were incorporated into bamboo and polymerized within cell walls. The WPG, WU, and TS were dependent on FA addition level. When the FA addition level reached 30 wt%, the physical properties were all improved significantly. However, due to acidic MA as the catalyst, MOR of furfurylated bamboo samples was enhanced only 2.5% while MOE was weakened. The thermal stability and decay resistance of furfurylated bamboo were all enhanced significantly compared to pristine bamboo. Especially, furfurylated bamboo treated with 30 wt% FA achieved Class I Strong Decay Resistance (<10%) with 5.3% of mass loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.