Abstract

Amylose inclusion complexes were prepared from jet-cooked aqueous mixtures of high amylose corn starch and 1-hexadecylamine (HDA). Slow-cooling produced torus/disc-shaped spherulites, whereas aggregates of smaller spherulites were obtained by rapid-cooling in ice. The morphologies and 61V X-ray diffraction patterns of these spherulites were similar to those of spherulites obtained previously with palmitic acid, indicating that spherulite morphology is influenced largely by the hydrophobic structure of the carbon chain of the complex-forming ligand and to a lesser extent by the nature of the more polar head group. Water soluble, cationic amylose inclusion complexes were prepared by adding an aqueous solution of the HCl salt of HDA to a jet-cooked dispersion of high amylose starch. The cationic nature of these HDA·HCl complexes suggests possible applications as flocculating agents for water purification and as retention aids in papermaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.