Abstract

Polymer particles with hydrophobic core and hydrophilic shell were prepared via a three-step method. First, poly(butyl methacrylate-co-methyl methacrylate) (p-(BMA-MMA)) latex was prepared through emulsion polymerization. Then, a shell of poly(glycidyl methacrylate) (p-GMA) was introduced around the p-(BMA-MMA) particles by using a redox initiation system under kinetically controlled conditions. Finally, part of the epoxy groups existing in the shell were converted into quaternary ammonium salts, resulting in an ionic hydrophilic shell. The core–shell particles could be redispersed in water to form a stable emulsion. The contact angle of the core–shell latex film with water was around 16° at 25 °C, which became larger than 90° after the film was heated at 150 °C for a short period of time. This showed that the latex film was completely switched from hydrophilicity to hydrophobicity by the action of heat. Additionally, the latex film before heat treatment could be easily washed away from the substrate with neutral water, but it could no longer be removed after the heat treatment. When an IR dye with the maximum absorption at 830 nm was incorporated into the film, it became sensitive to LD laser emitting at 830 nm and gave negative image after exposed by LD laser and developed with neutral water. This showed that the latex film might find uses in chemical-free thermal laser imaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call