Abstract

A novel naphthalimide-based solid-phase fluorescence pH sensor (PS-Acyl-II) is prepared by immobilization of a small molecule probe (II) on polystyrene microspheres through an ester bond and is characterized by Fourier-transform infrared spectroscopy, optical microscope, scanning electron microscope, and conductiometric titrations. The sensor can determine the pH of a solution within the pH 4.0–7.0, free from interference of common metal ions, and can be reused several times. The geometries of II, PS-Acyl-II, and its product with H+ are optimized at the B3LYP/6-31G** level by density functional theory. The charge distribution, orbital interactions, and bonding characteristics are analyzed and compared in detail to discuss the recognition mechanism and structure–fluorescence property relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call