Abstract

The goal of the present work was to study the feasibility of 10-hydroxycamptothecin (HCPT) nanoparticle preparation using supercritical antisolvent (SAS) precipitation. The influences of various experimental factors on the mean particle size (MPS) of HCPT nanoparticles were investigated. The optimum micronization conditions are determined as follows: HCPT solution concentration 0.5 mg/mL, the flow rate ratio of CO2 and HCPT solution 19.55, precipitation temperature 35 °C and precipitation pressure 20 MPa. Under the optimum conditions, HCPT nanoparticles with a MPS of 180 ± 20.3 nm were obtained. Moreover, the HCPT nanoparticles obtained were characterized by Scanning electron microscopy, Dynamic light scattering, Fourier-transform infrared spectroscopy, High performance liquid chromatography-mass spectrometry, X-ray diffraction and Differential scanning calorimetry analyses. The physicochemical characterization results showed that the SAS process had not induced degradation of HCPT. Finally, the dissolution rates of HCPT nanoparticles were investigated and the results proved that there is a significant increase in dissolution rate compared to unprocessed HCPT.

Highlights

  • Of the four factors that have an effect on supercritical antisolvent (SAS) micronization of HCPT from DMSO, three of the factors-concentration of HCPT solution, precipitation temperature and precipitation pressure-have a significant effect on the mean particle size (MPS) of micronized HCPT, while the drug solution flow rate showed insignificant effects

  • Nanoparticles using SEM, Dynamic Light Scattering (DLS), FTIR, LC-MS, XRD and DSC showed on one hand, no degradation of HCPT is induced by the SAS process, on the other hand, the obtained HCPT particles have lower crystallinity

  • There is a great increase of dissolution rate in HCPT nanoparticles by the SAS process compared to unprocessed HCPT

Read more

Summary

Introduction

10-hydroxycamptothecin (HCPT) nanoparticle preparation using supercritical antisolvent (SAS) precipitation. The influences of various experimental factors on the mean particle size (MPS) of HCPT nanoparticles were investigated. The HCPT nanoparticles obtained were characterized by Scanning electron microscopy, Dynamic light scattering, Fourier-transform infrared spectroscopy, High performance liquid chromatography-mass spectrometry, X-ray diffraction and Differential scanning calorimetry analyses. The physicochemical characterization results showed that the SAS process had not induced degradation of HCPT. 10-Hydroxycamptothecin (HCPT) (Figure 1), one of the natural camptothecin analogues, has been shown to have a broad spectrum of antitumor activity against breast, colon, lung, and ovarian cancers in clinical practice. HCPT was shown to be more potent and less toxic than camptothecin(CPT) in experiments on animals and in human clinical evaluations, mainly in

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call