Abstract

AbstractPolylactide (PLA) has been getting lots of interests in step with global concerns on sustainable green technology because it is biodegradable with reasonable mechanical strength and can be processed quite easily. But, to compete with commodity polymers in the market PLA‐based green composites need to have higher mechanical and thermal properties. Therefore, in this study, cellulose nanowhiskers (CNWs) as well as nanoclay were used as nanofillers to improve physical properties of PLA. CNWs were prepared from microcrystalline cellulose (MCC) powder by acid hydrolysis, and confirmed by TEM. To improve interfacial bonding between PLA and CNWs maleic anhydride‐grafted PLA (MAPLA) was prepared and used as a compatibilizer. PLA‐based composites were prepared by melt mixing followed by compression molding. Mechanical properties of the composites were measured by UTM and DMA. The melt mixing conditions were optimized first, and then composition was optimized step by step to obtain a PLA‐based green composite with excellent physical properties. CNWs were much better than MCC powder as reinforcing natural fillers. MAPLA and nanoclay could improve considerably physical properties of the PLA‐based composites. Compared to the PLA/MCC composite the tensile strength of the PLA/CNW/MAPLA/nanoclay composite was almost doubled and the glass transition temperature of the composite was 23°C higher, making the composite possible for commercial applications. POLYM. COMPOS., 2013 © 2013 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.