Abstract

Using bacterial cellulose (BC) prepared from Vietnamese nata-de-coco via an alkaline pre-treatment followed by a solvent exchange process, epoxy resin (EP)/BC biocomposites were fabricated using three different dispersion techniques: mechanical stirring only, both mechanical stirring and grinding, and both mechanical stirring and ultrasonication. The surface of BC was modified with a silane coupling agent to improve the chemical affinity between BC and epoxy resin. The biocomposite materials comprising BC, epoxy resin, and methylhexahydrophthalic anhydride as a curing agent were obtained from hot curing processing. The morphology and mechanical properties such as fracture toughness, enhanced K IC values, and tensile and flexural properties of the bio-based composites were compared with those of the virgin epoxy resin. The silane coupling agent had a vital role in improving the mechanical characteristics of the bio-based composites. For instance, K IC values, tensile strength, Young’s modulus, and flexural strength of the 0.3 wt% BC/epoxy composites with the presence of 2.0 wt% silane coupling agent were 0.7740 MPa m1/2, 53.32 MPa, 1.68 GPa, and 83.05 MPa. These values represent improvements of 36.77, 17, 15.86, and 14.42%, respectively, compared to a neat epoxy resin. Scanning electron microscopy revealed the rough fracture surface of epoxy resin/BC-based biocomposites with a multipathway crack, requiring more energy before breakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.