Abstract
This work aimed at thermal transport characterization of high density polyethylene (HDPE) filled with 5 and 50 μm expanded graphite (EG) particles and with 0.4 μm unexpanded graphite (UG) particles. Sample platelets were produced by melt mixing followed by compression molding. Thermal conductivity k was determined by combining measurements of density, specific heat capacity and thermal diffusivity, the latter by modulated photothermal radiometry (PTR). Starting from an effective medium approximation model, we derived a linearized expression for the effective k of composites with low particle charge. It explains the unusually high experimental k values (up to four-fold increase) as the effect of strongly non-spherical EG particles (aspect ratio 1/p = 110–290). Larger particle sizes produce higher k enhancement, while the interfacial thermal resistance (Rbd = 2.1⋅10−7 m2⋅K/W) has an opposite effect. The same model is consistent with experimental k for low particle charge HDPE/UG composites. At higher particle charge the model fails due to particle interaction leading to validity break of the effective medium approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.