Abstract

SiO2-based bulk and film sol–gel hybrid materials were prepared with a family of novel liquid crystalline (LC) amphiphilic azo-dyes bearing oligo(ethylene glycol) spacers (named here RED-PEG-n, n = 2, 3, 4, 6). The catalyst-free-sonogel route was implemented to produce optically active hybrid monoliths and spin-coated films with these materials. Comprehensive morphological, thermal, photo-acoustic and spectroscopic sample characterizations were performed in order to elucidate the physical properties of these novel compounds within the sonogel environment. Film samples were also studied via the nonlinear optical (NLO) second harmonic generation (SHG)-Maker fringes technique. Results show that the chromophores were homogeneously embedded within the highly pure SiO2-sonogel network, showing a clear thermotropic mesogenic behavior. The push–pull structure of the implemented azo-dyes allowed effective electrically-induced monomeric alignment within the sonogel confinement; thus, stable quadratic NLO-SHG-activity in the organic–inorganic film samples was achieved despite the lack of glass transition temperature (T g ) of the guest LC-compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.