Abstract

We have fabricated cupric oxide (CuO)-core/silica (SiO x )-shell nanowires by using a two-step process: thermal oxidation and sputtering. The structure and photoluminescence (PL) properties of the core/shell nanowires has been investigated by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and PL analysis techniques. The CuO cores and the SiO x shells of the as-synthesized nanowires have crystalline monoclinic CuO and amorphous SiO x structures, respectively. The PL emission intensity of the CuO-core/SiO x -shell nanowires has been increased but the emission peak position has not been nearly shifted by annealing in a nitrogen atmosphere, whereas the emission peak position has been shifted a lot from 510 to around 650 nm as well as the emission intensity has been increased by annealing in an oxygen atmosphere. In addition, the origin of the PL enhancement in the CuO-core/SiO x -shell nanowires by annealing and the growth mechanism of the CuO nanowires have been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.