Abstract

Nanocrystalline Si-rich silicon oxide films were deposited using plasma enhanced chemical vapor deposition technique with the mixture of silane (SiH 4), nitrous oxide (N 2O) and hydrogen (H 2) as gas source on quartz glass substrate at the substrate temperature of 300 °C. The effect of the ratio N 2O/SiH 4 on the oxidation, microstructures and photoluminescence (PL) of the as-deposited Si-rich silicon oxide films was investigated with FTIR, XRD and HRTEM. The results reveal that with the increasing ratio of N 2O/SiH 4, more amounts of oxygen are incorporated in the as-deposited films and more nanosized silicon particles are embedded in the films, forming nanocrystalline Si-rich silicon oxide films. The quantum confinement effect or the cooperation of quantum confinement and luminescence center results in the nanocrystalline Si-rich silicon oxide films of higher PL intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.