Abstract

Aiming at the problem of phosphorus removal in water, Mg/Al-layered double hydroxides (Mg/Al-LDHs) were synthesized via optimized constant pH co-precipitation method, and highly efficient phosphorus adsorbent Mg/Al-layered double oxide(Mg/Al-LDO) was obtained when it was calcined at high temperature. Based on the adsorption characteristics of phosphorus removal, the study combined Zeta potential, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) to analyze the changes of isoelectric point, crystal structure and functional group before and after adsorption. In addition, Mg/Al-LDO of phosphorus adsorption mechanism was discussed. The results indicated that using the optimized co-precipitation method in the conditions of Mg/Al=2:1, calcination temperature 450℃, and calcination time 2 h, the Mg/Al-LDO adsorption capacity of phosphate was the best, and the maximum adsorption capacity could reach 176.94 mg·g-1, which was basically consistent with the theoretical adsorption capacity of 191.57 mg·g-1, far higher than those of Mg/Al-LDHs and other phosphorus adsorbents. The results showed that the experimental data has the best fitting result with pseudo-second-order kinetics model. The adsorption process was consistent with Langmuir adsorption isotherm model. The results of Zeta potential, XRD and FTIR showed that phosphorus adsorption of Mg/Al-LDO was accomplished co-operatively by electrostatic attraction, anion in layer, ions exchange, and surface co-ordination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.