Abstract
Pervaporation is promising in the separation of benzene/cyclohexane mixture for the petrochemical industry. Two kinds of pervaporation membrane materials, including PEA‐based polyurethaneurea (PUU) and polyurethaneimide (PUI), were successfully synthesized from the same soft segment of poly(ethylene adipate)diol (PEA) and different hard segments via a two‐step method. The hard segment of PUU was prepared from toluene diisocyanate (TDI) and 4,4′‐diaminodiphenyl methane (MDA), while that of PUI was from 4,4′‐methylene‐bis(phenylisocyanate) (MDI) and pyromellitic dianhydride (PMDA). The structures and properties of PUU and PUI were characterized by means of FT‐IR, DSC and TGA. During the pervaporation experiment, the PUI membranes had a flux of 12.13 kg µm m−2 h−1 and separation factor of 8.25, while the PUU membranes had a flux of 26.35 kg µm m−2 h−1 and separation factor of 6.29 for 50 wt% benzene in the benzene/cyclohexane mixture at 40°C. The effects of the structures of hard segments on pervaporation performances were discussed. The investigation of the relationship in molecular structure and PV performances will be helpful for the choice and design of membrane materials in the separation of benzene/cyclohexane mixture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.