Abstract

Polyurethane/graphene (PU/GE) hollow fiber membranes made of a chemically foamed PU/GE spongy layer and inner reinforced poly(ethylene terephthalate) (PET) tubular braids were prepared by a one-step online chemically foamed method. Online chemical foaming involved the simultaneous formation of membrane pores with reaction to form PU by controlling the reaction rate. The hydrophobicity and lipophilicity of the membrane were increased by the introduction of GE, which as a heterogeneous bubble nucleating agent increased the bubble density. The properties of PU/GE hollow fiber membranes were investigated by testing of the micro-morphology, contact angles of different liquids, oil/water separation and membrane reusability. The experimental results showed that when GE was introduced into the foaming solutions, the hydrophobicity of the prepared membrane was increased and the thermal stability of the membrane was improved. With the increase in GE content, the pore size, porosity and pure oil flux of the chemically foamed PU/GE hollow fiber membranes first decreased and then increased, and the inverse change was observed with the liquid osmotic pressure. When GE content was 1.8 wt%, PU/GE hollow fiber membranes exhibited superior membrane performance, with separation efficiency as high as 90% and high flux (143 L·m−2·h−1 at −0.5 bar). The PU/GE hollow fiber membrane could be applied to continuous oil/water separation experiments. In addition, PU/GE hollow fiber membranes showed durability and reusability, and the flux recovery rate was kept above 90%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.