Abstract

In this work, carbon dot decorated copper sulphide/carbon nanotubes (CuS@CD-CNTs) composite with a unique three-dimensional (3D) grape string-like structure was directly prepared via in situ hydrothermal process at the temperature of 180 °C for 12 h and applied for supercapacitors. The chemical composition and morphology were systematically tested by XRD, Raman, SEM and TEM characterization techniques. The as-prepared CuS@CD-CNTs composite brings out a novel 3D grape string-like structure, where the CuS spheres are distributed homogeneously with CNTs as a result of the addition of carbon dot. As the active material of pseudocapacitor electrode, the CuS@CD-CNTs composite delivers superior electrochemical properties with a decent specific capacitance of 736.1 F g−1 at the current density of 1 A g−1. Also, the CuS@CD-CNTs composite showed exceptional cycling stability, maintaining 92% retention after 5000 charge-discharge cycles. Such superior electrochemical properties owe to the collective contribution of CuS, CD and CNTs and 3D grape string-like architecture. The excellent electrochemical results above suggest that CuS@CD-CNTs composite has promising electrochemical energy storage application in supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call