Abstract

Based on the porous carbon material from citric acid residue, catalysts of different Ce-Mn ratios were prepared with incipient-wetness impregnation (IWI) to delve into their acetone-degrading performance and relevant mechanisms. When the Ce-Mn molar ratio is 0.8, the prepared catalyst Ce0.8-Mn/AC shows abundant and uniformly dispersed Mn and Ce particles on the surface. The content of Mn and Ce on the Ce0.8-Mn/AC surface reaches 5.64% and 0.75%, respectively. At the acetone concentration of 238 mg/m3 (100 ppm), the laws of acetone degradation in different catalysts at different catalyzing temperatures and with various oxygen concentrations were studied, and we found that the rate of acetone degradation by Ce0.8-Mn/AC can exceed 90% at 250 °C. Cerium oxide and manganese oxide are synergistic in the catalytic degradation of acetone. Adding cerium to manganese-based catalysts can increase the oxygen migration rate in the catalysts and thus raise the reduction rate of lattice oxygen in manganese oxide. The results offer new ideas and approaches for the efficient and comprehensive utilization of bio-fermentation by-products, and for the development of cheap and high degradation performance catalysts for acetone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.