Abstract

The late transition metal catalyst system (η3-allyl)Pd(PPh3)Cl/Li[B(C6F5)4]·2.5Et2O (Li[FABA]) was used to catalyze 5-norbornene-2-methylenehexyl ether (NB-MHE) and 5-norbornene-2-methylene-(6-bromohexyl) ether (NB–O–Br) controllable addition copolymerization to obtain post-functionalized vinyl addition-type block copolymer aP(NB-O-Br-b-NB-MHE). 1,6-Bis(2-methylimidazole)hexane (Bis-MeIm) was used as a crosslinking agent to prepare a series of anion exchange membranes (AEMs) CL-aP(NB-O-Br-b-NB-MHE). The initial thermal decomposition temperature of the obtained addition-type polynorbornene-based AEM was about 250 °C. The AEM had moderate water uptake (WU) and swelling ratio (SR), and obvious micro-phase separation structure that could be observed from the AFM phase diagram. It could maintain high OH− conductivity (85.07 mS cm−1, 80 °C) and alkali resistance stability (soaking alkali for more than 500 h at 25 °C). In the single cell test of the H2/O2 fuel cell assembled by CL5-aP(NB-O-Br-b-NB-MHE), the peak power density was 177 mW cm−2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.