Abstract

As a biosynthetic polymer, Bacterial cellulose (BC) has been largely used in biomedical and technological fields for the excellent biocompatibility and water holding capability. In this study, BC hydrogel were mass-produced from G. xylinus. A novel gel, BC nanocomposite (BC/NC) hydrogel, was prepared via in situ free radical aqueous polymerization from NIPAM in the presence of Clay was added as physical crosslinker. The physical and chemical properties were evaluated, and the results showed that the properties of the composite hydrogel were improved, for example, the Young’s modulus rose by nearly 30%, from 4.7 to 6.0 Mpa with the increasing of NIPAM. BC/NC-lys hydrogel were prepared by treating BC/NC hydrogel with Lysostaphin solution, and the cytocompatibility and antibacterial activities were assessed in vitro. The effects of composite hydrogel on wound healing were examined in rat skin models, the cure rate was up to 92.35% in the test group and only 78.83% in the control group after 14 days. The composite BC/NC3-lys hydrogel were developed in the hope of accelerating the wound healing process as well as decreasing the infection rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call