Abstract

ω-hexatoxin-Hvn1b is an insecticidal toxin produced by the Tasmanian funnel-web spider (Hadronyche venenata), that can be exploited for development of novel bioinsecticides. Due to its larger size and low membrane permeability, this toxin usually has a slower mode of action compared to conventional small molecule insecticides. Nanoscale materials have unique optical, electrical, mechanical and biological properties, and show great application prospects for pesticide delivery. The physical and chemical properties of nanocapsules were characterized using transmission electron microscopy, laser particle size analysis, Fourier transform infrared spectroscopy, contact angle testing and with a fluorescence spectrophotometer. The results indicated that the nanocapsules were spherical, with an average particle size of 197.70 nm, the encapsulation efficiency rate was 75.82% and the Zeta potential was -32.90 mV. Penetration experiments showed that the nanocapsules could promote protein passage through the intestinal tract of Spodoptera litura and reach the body fluid. Then we expressed ω-hexatoxin-Hvn1b by prokaryotic expression. Bioassay results showed that the oral toxicity of ω-hexatoxin-Hvn1b nanocapsules to S.litura was higher than that of the ω-hexatoxin-Hvn1b. In this paper, we reported a construction method of spider venom peptide nanocapsules based on polylactic-co-glycolic acid by multiple emulsion for delivery of protein to improve the insecticidal effect and oral activity of ω-hexatoxin-Hv1a. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call