Abstract

A novel fluorescent probe, fluorescent dialdehyde cellulose (FDAC), was prepared to detect p-phenylenediamine (PPD) in water samples conveniently and quickly. This was achieved by grafting 7-amino-4-methylcoumarin (AMC) onto dialdehyde cellulose (DAC) via an aldol–amine condensation reaction. This method is greener, more economical, and simpler than existing methods for preparing fluorescent probes. The probe was found to be more effective for PPD detection in polar solvents, with less interference from pH and other compounds present in the sample matrix. The photoluminescence of FDAC at λex/λem = 340/430 nm was statically quenched by PPD, allowing for accurate detection within the range of 10–100 μmol/L under optimal conditions, with a detection limit of 3.2 μmol/L (3 σ/s). Meanwhile, the Schiff base (–C=N– group) generated by the condensation of DAC and AMC increased the reaction activity of the fluorescent moiety and changed the AMC conjugated structure, making FDAC more susceptible to aminolysis with PPD than AMC. This study presents a promising solution for fluorescence detection of aniline compounds, with significant potential for application in fields such as environmental analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call