Abstract

In this paper, a novel self-nanoemulsifying drug delivery system (SNEDDS) was used to improve the oral bioavailability in fasted state and diminish the food effect for rivaroxaban. Oil, surfactant, and co-surfactant were selected by saturated solubility study. IPM, Tween80, and 1,2-propanediol were finally selected as oil, surfactant, and co-surfactant, respectively. The pseudo-ternary-phase diagram was utilized to optimize the preliminary composition of SNEDDS formulation. The optimized rivaroxaban-SNEDDS formulation was selected by central composite design (CCD) of response surface methodology. Optimized SNEDDS formulation was evaluated for drug content, self-emulsifying time, droplet size, zeta potential, polydispersity index, Fourier transform-infrared (FTIR) spectroscopy, and transmission electron microscope (TEM). The drug dissolution profile compared to the commercial formulation Xarelto® (20mg rivaroxaban) was determined in four different media (pH1.2HCl, pH4.5NaAc-HAc, pH6.8PBS, and water). The result indicated that the SNEDDS formulation had successfully increased the drug solubility in four different media. A HPLC-MS method that indicated a high sensitivity, strong attribute, and high accuracy characteristic was built to measure the drug concentration in plasma. The fast/fed in vivo pharmacokinetics studies of SNEDDS formulation and Xarelto® were carried out in adult beagle dog, rivaroxaban with no food effect was achieved in SNEDDS formulation compared with Xarelto® in fed state. The result suggested that SNEDDS formulation in this study is useful to increase the oral bioavailability and diminish the food effect in fasted state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call