Abstract

In this study, a novel composite hydrogel that contains spinach extract (SE), gold nanorods (AuNRs), and poly(ethylene glycol) double acrylates (PEGDA) is prepared through a one-step in situ photopolymerization under noninvasive 660 nm laser irradiation for localized antitumor activity. SE plays a role as a photoinitiator for initiating the formation of the PEGDA hydrogel and as an excellent photosensitizer for generating cytotoxic singlet oxygen ((1)O2) with oxygen to kill tumor cells. AuNRs can be used as a photoabsorbing agent to generate heat from optical energy. Moreover, the introduction of AuNRs is conducive to the formation of the hydrogel and accelerates the rate of (1)O2 generation. The composite hydrogel shell, which has good biocompatibility on tumor cells, can prevent the photosensitizer from migrating to normal tissue and maintains a high concentration on lesions, thereby enhancing the curative effect. The combination of NIR light-triggered mild photothermal heating of AuNRs, the photodynamic treatment using SE, and localized gelation by photopolymerization exhibits a synergistic effect for the destruction of cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.