Abstract

The preparation of SiO2 ceramics with controllable porous structure from fir flour templates via sol-gel processing was investigated. The specific size the fir flour, which was treated with 20 % NaOH solution, was infiltrated with a low viscous silica sol and subsequently calcined in air, which resulted in the formation of highly porous SiO2 ceramics. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) were employed to investigate the microstructure and phase formation during processing as well as of the SiO2 ceramics. N2 adsorption measurements were used to analyze the pore size distributions (PSD) of the final ceramics. The results indicated that the surface topography was changed and the proportion of the amorphous material was increased in NaOH-treated fir flour. The final oxide products retained ordered structures of the pores and showed unique pore sizes and distributions with hierarchy on the nanoscale derived from the fir flour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call