Abstract

Microcellular polymeric foam structures have been generated using a pressure-induced phase separation in concentrated mixtures of supercritical CO2 and styrene-co-acrylonitrile (SAN). The process typically generates a microcellular core structure encased by a non-porous skin. Pore growth occurs through two mechanisms: diffusion of CO2 from polymer-rich regions into the pores and also through CO2 gas expansion. The effects of saturation pressure, temperature and swelling time on the cell size, cell density and bulk density of the porous materials have been studied. Higher CO2 pressures (hence, higher fluid density) provided more CO2 molecules for foaming, generated lower interfacial tension and viscosity in the polymer matrix, and thus produced lower cell size but higher cell densities. This trend was similar to what was observed in swelling time series. While the average cell size increased with increasing temperature, the cell density decreased. The trend of bulk density was similar to that of cell size. © 2000 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.