Abstract

Membrane distillation (MD) has unique advantages in the treatment of high-salt wastewater because it can make full use of low-grade heat sources. The high salinity mine water in western mining areas of China is rich in Ca2+, Mg2+, SO42− and HCO3−. In the MD process, the inorganic substances in the feed will cause membrane fouling. At the same time, low surface tension organic substances which could be introduced in the mining process will cause irreversible membrane wetting. To improve the anti-fouling and anti-wetting properties of the membrane, the PVDF omniphobic membrane in this paper was prepared by electrospinning. The water contact angle (WCA) can reach 153°. Direct contact membrane distillation (DCMD) was then used for treating high-salinity mine water. The results show that, compared with the unmodified membranes, the flux reduction rate of the omniphobic membrane was reduced by 34% in 20 h, showing good anti-fouling property. More importantly, the omniphobic membrane cannot be wetted easily by the feed containing 0.3 mmol/L SDS. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory was used to analyze the free energy of the interface interaction between the membrane and pollutants, aiming to show that the omniphobic membrane was more difficult to pollute. The result was consistent with the flux variation in the DCMD process, providing an effective basis for explaining the mechanism of membrane fouling and membrane wetting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call