Abstract
As an attractive high-entropy alloy, AlCrCoNiCu high-entropy alloy has excellent corrosion resistance, wear resistance, and anti-bacterial capabilities, and is considered to be a potential substitute material for marine and nuclear industry materials with great potential. One key to further optimizing the performance of high entropy alloy was to prepare high entropy alloy powder materials with uniform composition, good flow-ability, and stable performance. In this work, the AlCrCoNiCu high entropy alloy powder was prepared by the gas atomization method. The results indicated that the powder was spherical in shape, homogeneous in composition, and composed of a face-center cubic (FCC) phase. After adding Fe and Mn elements, FCC and body-center cubic (BCC) phases appeared and the particle size of the powder was mainly located at 10–50 μm. Furthermore, the larger the particle size was, the more obvious the surface roughness was. With the decreasing powder size, its shape became relatively regular, and the surface roughness decreased. This work provided an experimental and theoretical reference for preparing high-performance single-phase and multi-phase high entropy alloy spherical powders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.