Abstract

Abstract A machinable α-Al2O3/mica composite was prepared by hot-press sintering. In this experiment, a mica-contained glass ceramic in the MgO-Al2O3-SiO2-F glassy system was employed and the base glass powders were obtained by traditional melting-quenched method. Then, α-Al2O3 milling swarf was introduced by medium α-alumina milling ball to the glass powders. The test results indicate that the composites consist of mica crystal and mullite crystal, which are precipitated in the base glass. The α-Al2O3 shows an irregular polygon, which is inlayed in the base material. With the decrease of size of the base glass powders, the boundaries of composites among the sintered powders gradually vanish. The mica crystals in the composite also show an interlocking characteristic, which is a prerequisite of mica-contained glass ceramics with good machinability. Under different pressures, the tendency of preferred orientation is decreased with the reduction in grain size of glass powders, and the microstructure is proved to be consistent, significantly decreasing the composite’s hardness. Therefore, the machinability of the composite is improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.