Abstract
Granular (FePt)100-x–(NiO)x nanocomposite thin films with x in the range of 0 – 42 vol.% were fabricated on a natural-oxidized Si(100) substrate. It is found that both the coercivity and FePt domain size decrease with increasing NiO content for the (FePt)100-x–(NiO)x films. When the FePt-NiO nanocomposite film with NiO content of 10.4 vol.% is post-annealed at 750 °C with a high heating ramp rate of 100 °C/sec, the in-plane coercivity (Hc//) and perpendicular coercivity (Hc⊥) of the FePt films are 6.4 and 5.5 kOe, respectively. On the other hand, we used conductive atomic force microscope (CAFM) to confirm that the NiO compound is distributed at grain boundary of FePt grain that will constrain the domain size of FePt and obtain isolated magnetic domains. These results indicate that NiO addition is beneficial to enhance recoding density and reduce media noise of the FePt magnetic film.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.