Abstract

Cu-Ni core-shell nanowires, with an inner Cu core diameter of about 60 nm and varying Ni shell thicknesses (10, 30, 50, 60, and 80 nm), were successfully fabricated in porous polycarbonate (PC) iontrack templates by a two-step etching and electrodeposition method. In our experiment, the thickness of Ni shell can be effectively tuned through the etching time of templates. The core-shell structure was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern elucidates the co-existence of characteristic peaks for both Cu and Ni, indicating no other phases were formed during preparation. Magnetic hysteresis loops measured via vibrating sample magnetometry (VSM) revealed that Cu-Ni core-shell nanowires with thinner Ni shell exhibited obviously diamagnetic character and together with a weak ferromagnetic activity, whereas ferromagnetic behavior was primarily measured for the wires with thicker Ni shell. With increasing Ni shell thickness, the squareness and coercivity value became smaller due to the shape anisotropy and the formation of multi-domain structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call