Abstract

Mesoporous NiO–SiO2 (MCM-41) silica-matrix composites with various nickel oxide concentrations (NiO : SiO2 = 0.025 : 1 to 0.2 : 1) have been produced by oxide cocondensation under hydrothermal synthesis conditions in the presence of cetyltrimethylammonium bromide as a template and (2-cyanoethyl) triethoxysilane as an organosubstituted trialkoxysilane additive. X-ray diffraction data have been used to evaluate the maximum nickel(II) oxide concentration (NiO : SiO2 = 0.1 : 1) that allows the ordered mesopore structure of MCM-41 to persist in the silica-matrix composites. We have studied the magnetic properties of this material as functions of temperature and magnetic field. The results demonstrate that the magnetic properties of the nanocomposite with NiO : SiO2 = 0.1 : 1 at low temperatures (T < 20 K) are determined by incomplete spin compensation in the matrix and on the surface of the NiO nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.