Abstract

AbstractMaleic anhydride grafted low isotactic homopolypropylene elastomer (LiPP‐g‐MAH) is used as a compatibilizer in the melting mixing of polypropylene (PP) and clay. The microstructures of the composites of PP/clay (PPCN) are investigated using a wide‐angle X‐ray diffractometer (WAXD) and transmission electron microscope (TEM) as well as parallel rheometer, which show that PPCN with different phase morphologies have been obtained. It is found that the weight ratio of LiPP‐g‐MAH to clay and the weight content of LiPP‐g‐MAH in PPCN have a strong effect on the final dispersibility of the clay. The rheological response to small amplitude oscillatory shear (SAOS) shows that the storage modulus (G′) at the low frequencies is greatly sensitive to the microstructures in comparison with WAXD measurements. The investigation further indicates that the virgin clay particles, intercalated silicate crystallites, and exfoliated layers may coexist in the matrix at the same time, resulting in the great enhancement of G′ plateau at low frequency region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.