Abstract

Objective: The primary objective was to fabricate a novel drug delivery system capable of providing a controlled and prolonged release of antibiotics. Methods: The experimental design was formulated using Design-Expert® software (version 13), enabling systematic and efficient fabrication process optimization. The study involved the preparation of various nanofiber formulations with different ratios of the three polymers to assess their impact on drug release behavior. Mafenide, a widely used antibiotic, was chosen as the model drug for this investigation. The electrospinning process allowed for producing uniform and fine nanofibers with a high surface area, ensuring a large drug-loading capacity. The synthesized nanofibers were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to evaluate their morphology, chemical interactions, and thermal properties. The drug release kinetics of the antibiotic-loaded nanofibers were studied under different physiological conditions to assess their sustained release behavior. Results: The final nanofiber formula was successfully prepared using the electrospinning technique. The Fourier Transform Infrared Spectroscopy (FTIR) analysis was achieved to confirm the possibility of chemical interaction and bond formation between mafenide and the polymers. Present. The SEM picture of the optimized nanofiber formula showed the homogeneity and excellent entanglement of the electrospun nanofibers at a resolution of 5 µm. PVA/chitosan/HPMC and mafenide pure drug have been successfully fabricated with sufficient strength to resist swelling after absorbing wound exudate. The polymer network becomes more compact when chitosan and Hydroxypropyl Methyl Cellulose (HPMC) are combined with polyvinyl alcohol (PVA), enabling regulated swelling during solvent ingress. The polymer composite's three-dimensional network influenced how quickly the medication was released from the matrix. Sample 2's polymer network traps the medication, gradually releasing after controlled swelling, resulting in a sustained release profile compared to blank sample according to the cumulative release (%) study of mafenide loaded nanofiber and mafenide drug blank sample. Conclusion: This research successfully demonstrated the fabrication of sustained-release antibiotic nanofibers using electrospinning and three biocompatible polymers. The systematic optimization approach using Design-Expert® software proved effective in tailoring the drug release behavior of nanofibers. The developed drug delivery system holds great promise for pharmaceutical applications, particularly in improving antibiotic therapies and patient care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call