Abstract

Amyloid aggregation is a hallmark in many neuropathologies and other diseases of tremendous impact. It is increasingly evident that neuronal death associated with Alzheimer's disease (AD) is mainly produced by oligomers of the amyloid-β (Aβ) peptide. Yet little is known about the detailed structural and biophysical mechanisms of their formation. This lack of complete understanding comes from the labile nature and handling complexity of the oligomers. Consequently, providing reproducible and robust protocols for oligomer preparation is of particular importance.In this study, we describe detailed methods for the preparation and isolation of micellar oligomers of Aβ that evolve towards larger and more stable oligomers enriched in beta-sheet structure and able to acquire a higher capacity to fibrillate. We also describe briefly some biophysical experiments allowing oligomer characterization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call