Abstract

Cervical cancer is one of the most life threatening types of cancer among women and is generally resistant to chemotherapy. The objective of this study was to prepare a vaginal suppository containing a chemotherapeutic agent and a genetic material that can be applied locally for cervical cancer. Paclitaxel was selected as the chemotherapeutic agent and siRNA which inhibits BCL-2 oncogene was selected as the genetic material. Bcl-2 siRNA, paclitaxel and paclitaxel/Bcl-2 siRNA combination were incorporated into solid lipid nanoparticles (SLNs) and were dispersed separately in vaginal suppositories prepared with PEG 6000. Physicochemical properties of SLNs, their cytotoxicities on HeLa cell lines and also the effect of SLNs on the total protein amount of the cells were examined followed by the investigation of release rates of the active materials from the SLNs prepared. Average diameters of all SLNs prepared were below 180nm with a positive zeta potential value between +22.20 and +48.16mV at the pH range of 4.2 and 7.4. The release of Bcl-2 siRNA from SLNs incorporated Bcl-2 siRNA and the release of paclitaxel (PTX) from PTX incorporated SLNs were completed within 12h and 36h. SLNs incorporating Bcl-2 siRNA and paclitaxel/Bcl-2 siRNA were found to be more toxic when compared to paclitaxel incorporated SLN and placebo SLN. The disintegration of the vaginal suppositories as well as the release of the SLNs was completed within 2 h.This study indicates that vaginal suppository containing SLNs can bring the advantages of the simultaneous delivery of paclitaxel and siRNA via vaginal route with no help from professionals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call