Abstract

Floating microspheres have been utilized to obtain prolonged and uniform release of drug in the stomach for development of once-daily formulations. A controlled-release system designed to increase residence time in the stomach without contact with the mucosa was achieved through the preparation of floating microspheres by the emulsion solvent diffusion technique, using (i) calcium silicate (CS) as porous carrier; (ii) glipizide, an oral hypoglycemic agent; and (iii) Eudragit® S as polymer. The effects of various formulations and process variables on the internal and external particle morphology, micromeritic properties, in vitro floating behavior, drug loading, and in vitro drug release were studied. The microspheres were found to be regular in shape and highly porous. The prepared microspheres exhibited prolonged drug release (~8 h) and remained buoyant for >10 h. The mean particle size increased and the drug release rate decreased at higher polymer concentrations. No significant effect of the stirring rate during preparation on drug release was observed. In vitro studies demonstrated diffusion-controlled drug release from the microspheres. Microsphere formulation CS4, containing 200 mg calcium silicate, showed the best floating ability (88% buoyancy) in simulated gastric fluid. The release pattern of glipizide in simulated gastric fluid from all floating microspheres followed the Higuchi matrix model and the Peppas-Korsmeyer model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.