Abstract

In the present study cylindrical poly(epsilon-caprolactone) (PCL)-based biodegradable polymeric tamoxifen citrate-loaded subdermal implants were prepared by laboratory-based modified melt extrusion technique. The prepared implants were evaluated for their physicochemical parameters. Drug content in implants by high-performance liquid chromatographic (HPLC) method, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM) studies of tamoxifen citrate-loaded implants. Determination of in vitro hydrolytic degradation of polymeric and tamoxifen citrate-loaded implants and in vitro drug release was carried out by using indigenously developed dissolution apparatus. DSC and XRD studies proved that the drug is entrapped in the implant. The highest rate of hydrolytic degradation (weight loss) was observed in blank implants when compared to tamoxifen citrate-loaded implants.The studies proved that the developed method have potential in terms of industrial feasibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.