Abstract

Through self-assembly of nanoparticles into high-order and stable structures of cubic clusters, high drug-loading rubik-like magnetic nano-assemblies (MNAs), possessing folic acid targeting and strong magnetism-enhanced cellular uptake capabilities, were built. In this study, the core of the cubic drug assemblies consisted of four monodisperse superparamagnetic iron oxide nanoparticles coated with layers of oleic acid (Fe₃O₄@OA), simultaneously encapsulating fluorescein, and Paclitaxol (Flu-MNAs and PTX-MNAs) for imaging and therapeutic applications. To enable preferential tumor cellular uptake by the nanocarriers, the outermost layer of Fe₃O₄ was functionalized with the new dual-oleic acid-polyethylene glycol-folic acid polymer (FA-PEG-Lys-OA₂) as a "shell." The drug carriers exhibited excellent stability and biocompatibility, and showed high drug loading and excellent magnetic response In Vitro. Furthermore, preliminary evaluations of the drug carriers with Hela cells showed effective cellular targeting capability. In addition, the cubic assemblies enhanced anticancer efficiency for Hela cells compared to bare drugs. Especially, the applied external magnetic field further improved the uptake of the vectors, and thereby enhanced the inhibitory effect. In brief, all these results suggested that cubic assemblies could serve as potential strategies for targeted anticancer therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.