Abstract
The surface of food processing equipment is easily affected by biofilm-forming bacteria, leading to cross-contamination and food safety hazards. The critical issue is how to endow the surface of contact materials with antibacterial and antibiofilm abilities. A sustainable, stable, and antibiofilm coating was prepared by phase transition of glutenin. The disulfide bonds in glutenin were reduced by tris(2-carboxyethyl)phosphine, triggering the phase transition of glutenin. Hydrophobic interactions and intermolecular disulfide bonds may be the primary forces. Furthermore, the phase-transited products formed a nanoscale coating on the surface of stainless steel and glass under their own adhesion force and gravity. The coating exhibited good stability in harsh environments. More importantly, after 3 h of direct contact, the colony of Escherichia coli and Staphylococcus aureus decreased by one logarithm. The amount of biofilm was observed to be significantly decreased through optical microscopy and scanning electron microscopy. This article provides a foundational module for developing novel coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.